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Model Manipulation and Learning: Fostering Representational Competence
With Virtual and Concrete Models

Andrew T. Stull and Mary Hegarty
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This study investigated the development of representational competence among organic chemistry
students by using 3D (concrete and virtual) models as aids for teaching students to translate between
multiple 2D diagrams. In 2 experiments, students translated between different diagrams of molecules and
received verbal feedback in 1 of the following 3 intervention conditions: with concrete models, with
virtual models, or without models. Following the intervention, diagram translation accuracy was
measured in 3 posttests, which were with models, without models, and after a 7-day delay. The virtual
models in the 2 experiments differed in the level of congruence between the actions performed with the
input device and the resulting movement of the virtual model. Study 1 used a low congruence interface
and Study 2 used a high congruence interface. Students learned more when models were available. In
terms of learning outcomes, model-based feedback was superior to verbal-feedback alone, models served
as a learning scaffold rather than a crutch, and learning with model-based feedback was resilient over a
7-day delay. Finally, concrete and virtual models were equivalent in promoting learning, and action-
congruence of the interface did not affect learning. The results are discussed with respect to their
implications for instruction in organic chemistry and science, technology, engineering, and mathematics
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disciplines more generally.
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Visual representations are essential aspects of communication,
research, and teaching in the science, technology, engineering, and
mathematics (STEM) disciplines (Pauwels, 2006). Therefore, a
crucial aspect of STEM education is learning the conventions and
uses of disciplinary visual representations (Ferk, Vrtacnik, Blejec,
& Gril, 2003; Trumbo, 2006), sometimes referred to as acquiring
representational competence (Kozma & Russell, 1997). However,
mastering visual representations in science is often challenging for
students (Chariker, Naaz & Pani, 2011; Kali & Orion, 1996; Wu &
Shah, 2004; Novick, Stull, & Catley, 2012). The focus of this study
is on methods of facilitating the development of representational
skills, specifically, how three dimensional (3D) models can be
used to help students learn about the structure of molecules and
learn the conventions of disciplinary representations in organic
chemistry. We propose that external models serve as cognitive
scaffolds (Yelland & Masters, 2007) for reducing cognitive load
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(Kalyuga, 2007; Sweller, 1988) and for externalizing and aug-
menting cognitive processes (Kirsh, 1995) to support the develop-
ment of representational competence and spatial reasoning with
visual representations.

Many STEM disciplines employ models, that is, three dimen-
sional visuospatial representations, in teaching and practice. Mod-
els are complementary to other types of representations such as
diagrams, formulas, and equations (Ainsworth, 1999). In mathe-
matics, models, such as Cuisenaire rods, are used to physically
instantiate concepts (Kaminski, Sloutsky, & Heckler, 2009) and
support cognitive development from enactive toward symbolic
forms of representation (Abrahamson & Lindgren, 2014). In anat-
omy, models typically represent the visual, spatial, and tactile
properties of living tissues or organs (Preece, Williams, Lam, &
Weller, 2013). In geology (Kastens & Rivet, 2010) and biochem-
istry (Harris et al., 2009), models represent objects and processes
that occur at spatial and temporal scales that are not directly
experienced. In astronomy, (Barnett, Yamagata-Lynch, Keating,
Barab, & Hay, 2005) models enable students to adopt different
frames of reference.

Here, we focus on organic chemistry, a domain in which spatial
information is particularly important and in which spatial repre-
sentations are ubiquitous. Spatial thinking is important in chemis-
try because the reactivity of molecules is predicted, not just by the
number and type of atoms that make up a molecule, but also by
their spatial configuration (Harle & Towns, 2010). Chemists use
two general types of spatial representations to represent submicro-
scopic entities such as molecules; 3D models, which might be
concrete (i.e., physical) or virtual (i.e., computer-based), and 2D
diagrams, which use conventions to represent 3D relations in the
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two dimensions of the printed page (Francoeur, & Segal, 2004).
Developing skills in drawing, interpreting, and translating between
these spatial representations is essential to a student’s education as
a chemist (Cheng & Gilbert, 2009; Goodwin, 2008; Kozma &
Russell, 1997). However, these spatial representations are not
always easy to interpret and use (Harle & Towns, 2010; Keig &
Rubba, 1993; Pribyl & Bodner, 1987). Specifically, beginning
students have difficulty translating between different representa-
tions of the same molecule (Kozma & Russell, 1997; Wu & Shah,
2004) and this is particularly true of students with low spatial
ability (Harle & Towns, 2010; Pribyl & Bodner, 1987).

Cognitive Load and Learning Representations

Learning novel representational formalisms in organic chemis-
try induces high cognitive load for a number of reasons. First, the
entities to be represented, molecules made up of several atoms in
specific spatial configurations, are quite complex, so that mental
representations are likely to overload spatial working memory
(Shah & Miyake, 1996). A second source of cognitive load is that
interpreting different diagrams involves recalling and imagining
how different diagrammatic conventions depict 3D spatial entities
in the two dimensions of the printed page (Tversky, 2005). A third
source of cognitive load is that translating between different dia-
grammatic representations involves mentally transforming these
representations. Students with poor spatial abilities are likely to
experience greater cognitive load, because they have more limited
working memory capacity (Shah & Miyake, 1996).

We propose that 3D models provide an external representation
that allows 3D space to be represented directly, thus relieving
students of the cognitive demand of interpreting how 2D diagram-
matic conventions represent 3D space. With external models, 3D
space is perceptually evident, offering students a holistic represen-
tation of the referent (Copolo & Hounshell, 1995; Savec, Vrtacnik,
& Gilbert, 2005; Wu, Krajcik, & Soloway, 2001). Moreover,
manipulating an external model allows students to also exter-
nalize the transformation processes, supporting enactive learn-
ing (Bruner, 1957; Cohen, 1989). It is easier to manually rotate an
external model of a spatial entity, such as a molecule or the solar
system, than it is to mentally rotate an internal representation of the
referent (cf. Cary & Carlson, 2001; Kirsh, 1995; Preece et al.,
2013). We propose that when a model is used to externalize the
referent as well as its transformation, cognitive load is reduced for
the student, and this enables the student to invest more cognitive
effort in mapping conventions between the diagram and its referent
and in translating between representations. Moreover, we argue
that models can act as a cognitive scaffold (Yelland & Masters,
2007) to enable students to make the representational connections
between diagrams and models, so that once students understand
these representational connections and transformations, the models
are no longer necessary and can be removed.

To illustrate this proposal, Figure 1 shows four representations
of the same molecule, which are the focus of the present research.
The three diagrams are 2D representations, which show the mol-
ecule from different perspectives and use different conventions
(described in Appendix A) to depict three dimensional information
in the two dimensions of the printed page. Interpreting these
diagrams requires effortful interpretation of the spatial conven-
tions, which must be maintained in working memory. The model

a b c d
CHs; CHs
H NH,
HO ——H

HO H H—7—OH
OoH

NH;

Figure 1. Four structural representations of an organic molecule. (a) A
concrete (ball-and-stick) model where color is used to denote different
atoms. Black is carbon, white is hydrogen, red is oxygen, and blue is
nitrogen. (b) Dash-Wedge diagram (side-view), (c) Newman diagram (end
view), and (d) Fischer diagram (upright view) of the same organic mole-
cule depicted in the balland-stick model. (Originally published in Stull, et
al, 2013) See the online article for the color version of this figure.

is an iconic 3D representation in which the 3D relations between
parts of the representation represent the 3D relations between the
atoms and bonds, so that the spatial relations can be directly
perceived, and there is less load on working memory.

Figure 2 outlines two possible strategies for translating from one
of the diagrams (e.g., Dash-Wedge) to another (e.g., Newman). In
one strategy, the internal transformation strategy, students view a
given diagram, decode its spatial conventions to form an internal
image of the molecule, mentally rotate this internal model, and
then encode the spatial conventions of the new perspective before
drawing the target diagram. We argue that this strategy is likely to
overload working memory capacity, that is, induce high cognitive
load (Kalyuga, 2007; Sweller, 1988). A second option is the
external transformation strategy, which is to decode the conven-
tions and manipulate a model to first align it with the perspective
of the given/starting diagram (match start), then physically rotate
the model to align it to the perspective of the target diagram (match
target), and then encode the spatial conventions to draw the target
diagram. In this way, a model can serve as a tool to support
structural alignment and mapping of features between different
representations (Gentner, 1983). In using this strategy, performing
actions in the world rather than in the mind reduces cognitive load
(cf. Cary & Carlson, 2001; Kirsh, 1995; Preece et al., 2013),
freeing up mental resources to enable students to make the relevant
referential connections. As a result, we might expect that students
will be more successful when they use the external transformation
strategy, especially if they have poor spatial abilities, which are
known to be associated with limited spatial working memory
(Shah & Miyake, 1996).

In previous research, Stull, Hegarty, Dixon, and Stieff (2012)
demonstrated that providing students with concrete models im-
proved performance in translating between different diagrams of
molecules, but only when models were used to perform the exter-
nal transformation strategy. However, most students did not spon-
taneously adopt this strategy, and many ignored the models. In
addition, spatial ability predicted task performance in control con-
ditions, but when models were available, model use was a much
stronger predictor of translation accuracy than spatial ability. In a
follow up study, Padalkar and Hegarty (2014) developed an inter-
vention in which students first completed some diagram translation
problems, and were then guided to check their solutions by trying
to match a concrete model of the same molecule to both the
diagram they were given and the diagram they had drawn. Com-
pleting diagram translation problems made students externalize
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Figure 2. Process model for the translation between a viewed diagram and a diagram to be drawn. The solid
arrows mark the path for the Internal Translation Strategy, which employs mental imagery, and the dashed
arrows mark the path for the External Translation Strategy, which employs manual actions to enact the

translation.

their existing understanding of the representational conventions.
Comparing the external 3D model with their self-generated dia-
gram exposed students to their errors and caused them to discover
the benefit of models. As a result, their use of the external trans-
formation strategy increased on later problems and their perfor-
mance on the diagram translation task dramatically improved.
Padalkar and Hegarty suggested that this intervention was success-
ful because students were overconfident in their ability to complete
the task without models and model-based feedback caused them to
confront their illusions of understanding (Rozenblit & Keil, 2002).

In Padalkar and Hegarty’s (2014) study, students were provided
with concrete models on posttests and improved performance was
mediated by model use, raising the concern that models might have
become a crutch for students, rather than scaffolding their learning.
Ultimately, students need to construct internal mental models of
molecular structure and diagram translation, if only because they
are not allowed to bring concrete models to their exams. Therefore,
it is important to test whether effects of model-based feedback can
transfer to situations in which students do not have access to
models. Furthermore, Padalkar and Hegarty tested students imme-
diately after the intervention, raising questions about the durability
of the learning effects.

Scaffolds or Crutches?

The practice of scaffolding was systematically studied by Je-
rome Bruner (1957) in the context of children’s learning, which in
his situation could be referred to as social scaffolding because the
support is provided through the social interaction of the child and
adult tutor. Importantly, the support offered by the tutor is with-
drawn as the student develops competence. In a similar way, a
manipulative model may serve as a cognitive scaffold (Yelland &
Masters, 2007) when it offers temporary support to help students
understand how various 2D diagrams represent 3D space and how
to translate between different representations. We predict that
models serve as a cognitive scaffold because they relieve students

of cognitive load by externally representing both the 3D structure
of the object and the translation processes, and this frees up
cognitive resources, enabling students to learn the conventions of
2D diagrams and how to translate between these diagrams. In the
present study we test the prediction that models act as a scaffold by
examining whether manipulation of concrete or virtual models
during learning transfers to performance when models are no
longer available. If manipulation of models during learning en-
ables students to internalize the spatial structures and transforma-
tions, it should be possible to remove the scaffold. However, it is
possible that manipulating models may make students dependent
on external models. In short, we ask whether manipulative models
scaffold learning or whether they act as a crutch.

There are several reasons to believe that external manipulations
of models will lead to the development of internal spatial trans-
formation processes, that is, act as a scaffold. First, basic research
on enactive learning has shown that memory for verbal informa-
tion can be enhanced when students enact descriptive material
(Cohen, 1989; Engelkamp, Zimmer, Mohr, & Sellen, 1994; Glen-
berg, Gutierrez, Levin, Japuntich, & Kaschak, 2004; Schwartz &
Plass, 2014). Enactive learning theorists suggest that physical
action enhances multimodal coding and recall. Although previous
research primarily involved learning about everyday actions (e.g.,
throw a ball, hammer a nail) to support reading comprehension
rather than scientific processes, models might also supports mem-
ory encoding and recall by serving as cognitive scaffolds to enact
mental processes. Second, there is now considerable evidence that
mental and manual spatial transformations share common pro-
cesses (Wohlschldger & Wohlschldger, 1998), and that performing
spatial transformations manually can improve the corresponding
mental spatial transformation processes. Specifically, practice in
manually rotating physical or virtual objects can improve mental
rotation skills (Adams, Stull, & Hegarty, 2014; Pani, Chariker,
Dawson, & Johnson, 2005; Smith & Olkun, 2005; Wiedenbauer &
Jansen-Osmann, 2008). We, therefore, predict that our interven-
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tion, which involves externally manipulating models to receive
feedback, will not just teach students to translate diagrams by
externally manipulating models, but will also enable students to
internalize the relevant spatial transformations, so that learning
transfers to situations in which models are no longer available.

Concrete or Virtual?

A secondary question addressed in this research is whether
concrete and virtual models are equally effective as scaffolds to
developing representational competence. In the chemistry class-
room, concrete models are quickly taking a backseat to computer-
based, virtual models which are becoming increasingly available
(U.S. Government Accountability Office, 2005). However, re-
search comparing virtual and concrete models in chemistry is
sparse and in previous research, use of models was often con-
founded with other aspects of instruction, such as project-based
learning (Barak & Dori, 2004) and case-based learning (Dori &
Kaberman, 2012), making it impossible to separate the benefit of
the models from the method of instruction.

In comparing concrete and virtual models in STEM domains, it
is important to realize that these types of models differ in percep-
tual and motor cues. First, concrete models provide information by
haptic and visual cues, so that a student manipulating a concrete
model receives information about the model’s position, shape,
size, and texture from multiple modalities. In contrast, when stu-
dents interact with a virtual model, the primary information is
visual (Ruddle & Jones, 2001). Second, virtual models in STEM
disciplines differ in their action-congruence, that is, correspon-
dence between the actions performed with the interface and the
resulting movement of the virtual model (Satava, 1999; Triona &
Klahr, 2003). An example of high congruence is rotating an input
device in three dimensions to see the corresponding 3D rotation of
the on-screen object; an example of low congruence is pressing a
key on a keyboard to produce the same rotation—the latter is
currently more common in typical chemistry classrooms. High
action-congruence has been found to be beneficial to learning
manual skills, such as learning to manipulate a surgical instrument
(Snyder, Vandromme, Tyra, & Hawn, 2009). In contrast, low
action congruence is likely to increase cognitive load.

Basic research on mental rotation supports the idea that action-
congruence may be important when using a hand-held interface to
manipulate a virtual model. Wohlschlidger and Wohlschldger
(1998) asked people to mentally rotate objects while simultane-
ously rotating a nob that could be turned in the same direction or
the opposite direction as the requested mental rotation. Perfor-
mance was impaired when the direction of knob turning was
opposite to the direction of mental rotation. Similarly, Wexler,
Kosslyn, and Berthoz (1998) found that the speed of mental
rotation could be increased or decreased when the speed of simul-
taneously rotating a joystick increases or decreases, and suggest
that mental rotation is a covert simulation of manual rotation.
Given the value of enactment, the common processes underlying
manual and mental processes, and the impairment observed when
manual and mental tasks are discordant, we predict that action-
congruence will enhance performance and learning with virtual
models.

The Present Study

In the present study, we examined how model use helps students
learn to translate between diagrammatic representations and how
this learning transfers to situations in which models are not avail-
able. We also compared learning with computer-based, virtual
models and concrete models. We conducted two experiments
comparing the effectiveness of model-based feedback with virtual
or concrete models to verbal feedback in teaching students to
translate between different diagrams of molecules. In Experiment
1, the virtual models had relatively low action-congruence. In
Experiment 2 they had relatively high action-congruence.

First, we hypothesized that the model-based intervention would
be associated with improved translation accuracy after instruction
with models because models reduce cognitive load by allowing for
internal representations and processes to be replaced or augmented
by external objects and actions (Stull et al., 2012) and because
model-based feedback supports knowledge integration by address-
ing student misconceptions (Padalkar & Hegarty, 2014).

Second, we hypothesized that models scaffold learning because
they relieve cognitive load by representing 3D spatial relations
directly and allowing students to partly externalize spatial trans-
formation processes, freeing up mental resources for learning.
Specifically, students who learn with models should have better
performance than those who learn without models, even when
models are no longer available.

Third, we hypothesized that students who learned with models
would show learning gains that are resilient after a delay, even in
the absence of models, because external transformations enacted
with the manipulative models lead to internalization of diagram
conventions and translation processes.

Fourth, we hypothesized that using models to externalize key
aspects of the representation translation would be more predictive
of performance than spatial or reasoning ability, as found by Stull
et al. (2012). Moreover, we predicted that using models in this way
would predict performance not just when models are available, but
would predict future performance when models are no longer
available because manipulative models directly represent 3D space
and can be used to enact the translation process, limiting demands
placed on spatial working memory if the object and process were
only imagined.

Finally, although we expected learning with both virtual and
concrete models to be better than learning without models, we
predict superior learning for students who used concrete models
compared to those who use low-congruence virtual models, be-
cause low action congruence adds cognitive load, thus reducing
cognitive resources available for learning.

Study 1

Method

Participants and design. Participants were 148 undergradu-
ate organic chemistry students at a research university who had
completed at least one course in organic chemistry and had been
introduced to the models and diagrammatic representations in their
courses. One hundred and five students remained in the analysis
(age: M = 19.6, SD = 0.99) after 4 were dropped for failing to
follow directions, 4 because of technical errors, 11 for not com-
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pleting the study, and 24 because they had perfect or almost perfect
performance on the pretest (i.e., they made either zero or one
error), indicating that they had already mastered the task and there
was nothing for them to learn.

The experiment followed a 4 (test type: pretest, models posttest,
no-models posttest, delayed posttest) X 3 (intervention: concrete
models, virtual models, or control) mixed design. Test type was a
within-subjects variable and intervention was a between-subjects
variable. Males and females were assigned randomly to one of the
two models groups or the control group, to ensure gender balance
across the conditions. There were 36 (17 males) in the concrete
model group, 31 (15 males) in the virtual model group, and 38
students (16 males) in the control group. They received either
course credit or $40 for their participation.

Materials. The study materials included an informed consent
sheet, a diagram description sheet, a task description sheet, dia-
gram translation problems (one 6-item pretest and three 12-item
posttests), ball-and-stick models (12 concrete and 12 virtual mod-
els), a demographic questionnaire, a spatial ability test, and an
abstract reasoning test.

Diagram translation problems. For each problem, one kind of
diagram of a molecule (i.e., either Dash-wedge, Newman projec-
tion, or Fischer projection; see Figure 1) was given at the top of a
paper worksheet (8.5 in. X 11 in.) with text appearing below
giving instructions to translate this diagram into one of the other
two kinds of diagram of the same molecule. A horizontal line on
the worksheets for the pretest divided the paper into an upper
region where participants drew their original translation and a
lower region where additional drawings were made if the original
was incorrect. The drawing space was not divided on the posttests.
There were six kinds of problems (i.e., translations from Dash-
wedge to Newman, Newman to Fischer, Fischer to Dash-wedge,
and vice versa).

The pretest included six unique problems (i.e., one of each kind)
with 4-carbon molecules. The three separate posttests (models,
no-models, and delayed) each included 12 unique problems, six
with 4-carbon molecules and six with 5-carbon molecules. All of
the molecules used in the problems had two chiral carbons (i.e.,
carbons that were bonded to four different atoms or groups of
atoms) linked by a single bond. The problems for the no-models
posttest were diastereomers (i.e., differed from the pretest prob-
lems in the order of components around one chiral carbon) and
problems for the delayed posttest were enantiomers (i.e., differed
from the pretest problems in the order of components around both
chiral carbons).

Ball-and-stick models. The concrete models were constructed
from a commercial molecular modeling kit (HGS Introductory
Organic Chemistry Set 1000) that is commonly used in high school
and college chemistry courses. The virtual models were created
with ACD/ChemSketch® (Toronto, Canada) and Blender® (Am-
sterdam, The Netherlands). Visual appearance of the virtual mod-
els matched that of the concrete models in apparent size, shape,
and color to minimize differences between the concrete and virtual
stimuli. Vizard® (Santa Barbara, U.S.A.) virtual reality software
was used to display the virtual models. The virtual models were
manipulated with a mouse and keyboard in a manner that is typical
of most commercially available molecular modeling software that
is available to students in a high-school or college chemistry
course. The whole virtual model could be rotated with the com-

puter mouse. A rotation or twist around the central bond linking
the two chiral carbon atoms could be performed with the up- and
down-keys on the keyboard. The bonds connecting the substituents
to the chiral carbon atoms could be rotated in the concrete models
but not in the virtual models, which constrains the interactivity.

Questionnaire and tests. The demographic questionnaire, spa-
tial ability test, and abstract reasoning test, were administered with the
Qualtrics® (Utah, U.S.A.) online survey tool. The questionnaire col-
lected self-reported demographic information (i.e., age, sex, date of
birth, major course of study, years in college, handedness, colorblind-
ness, and stereo vision) as well as specific information about how
many organic chemistry classes students had taken and their famil-
iarity with video game technology, such as 3D glasses or TVs, and
with the diagrams and models used in the study. An online version of
the Vandenberg and Kuse (1978) Mental Rotation Test was admin-
istered as a test of spatial ability, which consisted of 20 items admin-
istered in two 3-min blocks of 10 items. An online version of the
Abstract Reasoning Test from the Differential Aptitudes Test (Ben-
nett, Seashore, & Wesman, 1974) was administered as a test of
general reasoning ability (40 items, 10 min time-limit).

Procedure. The experimental and control groups were first
given basic instructions, which included examples of the three
kinds of diagrams with reminders of the conventions of each
diagram (see Appendix A) and the nature of the task (see Appen-
dix B). After they read the instructions, participants completed the
Pretest problems without the aid of models. They were told that
they could draw any conformation of the molecule shown in the
given diagram.

After completing the pretest problems, all groups went through a
training intervention using their pretest drawings (described in the
following paragraphs). Next, all groups solved the 12-problem post-
test, with models available (models posttest) for the concrete and
virtual groups, then they completed an additional set of 12 problems
with no models available (no-models posttest), and responded to the
demographic questionnaire and the Mental Rotation Test (MRT).
Then each participant was scheduled to return in 7 to 10 days to
complete the second session.

In the second session, participants completed the 12-item de-
layed posttest and the Abstract Reasoning Test before being de-
briefed and dismissed. Participants were videotaped with their
consent during the Pretest and all posttest drawing tasks.

Intervention. The intervention involved providing participants
with feedback to help them check their solutions to each of the Pretest
problems and to redraw a new solution if any of their drawings were
incorrect. In the case of the Control group, only verbal feedback was
provided but for the two model groups, verbal as well as model-based
feedback was provided.'All three groups (concrete models, virtual
models, no-models) were allowed to refer to the instruction sheet
describing the three types of diagrams during the intervention. Table
1 summarizes the similarities and differences between the different
intervention conditions.

Participants in the control group were first instructed to review
the given diagram and to make sure that they understood its
conventions. Next, they were instructed to review their drawn
diagram and to tell the experimenter if they thought their diagram

! This design differs from the study of Padalkar and Hegarty (2014;
Experiment 1) in which the control group received no feedback.
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Table 1

STULL AND HEGARTY

Summary of Feedback Type (Concrete Model, Virtual Model, or Control) and Timing of Tests for Both Study 1 and Study 2

Models posttest No-models posttest Delayed posttest

Feedback type Pretest Intervention (same day) (same day) (7-day later)
Concrete No models Concrete models with verbal feedback Concrete models No models No models
Virtual No models Virtual models with verbal feedback Virtual models No models No models
Control No models Verbal feedback only No models No models No models

was correct or incorrect. Students were then told if their solution
was correct or incorrect and the nature of any error was described
(see the following text). Finally, students drew a new diagram
below the horizontal line, and received verbal feedback on that
diagram. These steps were repeated until each participant drew a
correct solution to the problem. The number of corrective inter-
vention cycles to reach criterion, a correct answer, on each Pretest
problem were tabulated.

For the model-based feedback for the two model groups, partici-
pants were provided with the appropriate model of the molecule that
they had attempted to draw in each of the six Pretest problems. First,
they were asked to match (i.e., structurally align, cf., Gentner, 1983)
the model with the given diagram in the problem. Guidance was
provided only if the participant was unable to align the model to the
given diagram. Next, participants were asked to align the model with
their solution to the problem, which was drawn above the horizontal
line, and to determine if their diagram was correct. If the participant
had drawn a correct solution, alignment was possible. Once they
could align the model with their drawing, they were asked to move to
the next problem. If the solution was incorrect, it was not possible to
structurally align the model with the solution, and this was explained
if the participant was not able to discover his or her error. Then
participants were asked to use the model to draw a new, corrected
diagram below the horizontal line. If necessary, these steps were
repeated until each participant drew a correct solution to the problem,
with the number of cycles tabulated for each problem.

The verbal feedback provided during all interventions was error-
specific. The recorded errors were either spatial errors, connectivity
errors, or fundamental errors (Padalkar & Hegarty, 2014). A spatial
error occurred when the drawn diagram was made up of the correct
molecular substituents connected to the correct chiral carbon atoms,
but their 3D spatial arrangement was incorrect. A connectivity error
occurred where the drawn diagram was made up of the correct
substituents, but these substituents were connected to the wrong chiral
carbon atoms. Finally, a fundamental error was syntactic and includ-
ing drawing the wrong type of diagram, drawing the wrong template
for a diagram type, or drawing a diagram with missing, additional, or
duplicate substituents. An example of verbal feedback for a spatial
error is: “You have drawn the wrong order of these three substituents,
so you have drawn an isomer and not the molecule requested.” An
example of verbal feedback for connectivity errors is “In your dia-
gram you have drawn these substituents on the wrong carbon.” Verbal
feedback for a fundamental error depended on the nature of the error.
For example, if the student drew the wrong diagram template then
they might be told “Notice that you were asked to draw a Newman
projection, but you drew a Fischer,” or, if a participant drew a
duplicate substituent, they were told, “Notice that there is only one
group in the given diagram. You have drawn two.”

Out of 641 pretest trials, 205 (32%) were correct on their first
drawing, 379 (59%) were corrected in the first cycle of the inter-

vention, 51 (8%) were corrected in the second cycle of the inter-
vention, and there were 6 cases (~1%) in which participants took
three or more attempts to draw a correct solution.”

Coding of solutions. Each diagram translation problem was
coded as correct or incorrect (no partial credit was given). The total
proportion of correct solutions served as the accuracy scores for
the pretest and posttest measures. Pretest and posttest data for 25
participants (23% of the data; 1050 trials) were coded indepen-
dently by two researchers and interrater reliability was high (Co-
hen’s k = 0.93). Discrepancies were resolved by consensus.

Coding of model use behaviors. Model use was coded from
the videos by two experienced coders for three behaviors central to
the external transformation strategy, namely (1) aligning the model
to match the conformation and the orientation of the given or
starting diagram (match-start), (2) reconfiguring the model by
rotating substituents around the sigma bonds (rotate bond), and (3)
aligning the model to match the conformation and orientation of
the model to the target diagram (match-target). Video recordings
of 15 participants (21% of the data; 840 trials) were coded inde-
pendently by two reviewers and interrater reliability was high
(Cohen’s k = 0.93). Discrepancies were resolved by consensus.

Results and Discussion

Throughout this article, nonparametric tests were performed if
assumptions of analyses of variance were not met and, when
appropriate, Bonferroni corrections were applied to address family
wise error rate. There were no statistically significant differences
between the experiment groups in age, mental rotation ability,
abstract reasoning, grade point average, or number of organic
chemistry courses completed. The relevant descriptive and infer-
ential statistics are given in Table 2. There was a statistically
significant difference between the groups in the number of inter-
vention cycles needed to reach criterion on pretest problems.
Participants in the control group required more corrective cycles
than did those in the concrete group, U = 454.5,Z = —2.52,p <
.01, » = .29,% but not than those in the virtual group, U = 437.5,
Z = —1.85, p = .03. The concrete and virtual groups did not
statistically differ, U = 518.5, Z = —0.51, p = 31.

Models as learning aids. Figure 3a and Table 3 present the
pretest and posttest accuracy data for the different groups. As
revealed by a Kruskal-Wallis test, participants in the three inter-
vention conditions did not statistically differ in pretest perfor-

2 Spatial errors were the most common, and accounted for 94% of all
errors in Study 1. The percentage of spatial errors did not differ across
conditions.

3 Effect size measures, Pearson’s r, are calculated for non-parametric
statistical comparisons as suggested by Field (2005). Rosnow, Rosenthal,
and Rubin (2000) outline methods for converting between Pearson’s r and
Cohen’s d.
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Table 2

Means, Standard Deviations, and Inferential Statistics Comparing Individual Difference
Measures for the Three Intervention Conditions in Study 1

Measure Condition M (SD) n Inferential test

Age Concrete 19.46 (.80) 36
Virtual 19.49 (.66) 31 H(2) =1231,p =32
Control 19.90 (1.29) 38

MRT Concrete 40.49 (14.07) 36
Virtual 4291 (16.31) 31 H(2) =2.02,p =37
Control 36.97 (17.89) 38

Abstract reasoning Concrete 25.17 (6.37) 36
Virtual 25.46 (6.65) 31 H2) = 40,p = .82
Control 25.84 (6.95) 38

GPA Concrete 3.24 (45) 36
Virtual 3.39 (.39) 31 H(2) =3.62,p = .16
Control 3.21(.33) 37

Number of O-chem courses Concrete 1.89 (.74) 36
Virtual 1.74 (.56) 31 H(2) =45,p = .13
Control 2.08 (.66) 38

Number of intervention cycles Concrete 4.33 (1.60) 36
Virtual 4.58 (1.65) 31 H22) =69,p = .03
Control 5.37 (1.78) 38

Note. Kruskal-Wallis Tests were performed because assumptions of analyses of variance were not met for
some measures. MRT = Mental Rotation Test; GPA = grade point average.

mance, H(2) = 0.34, p = .84, but they did differ in performance
on the models posttest, H(2) = 48.25, p < .001, no-models
posttest, H(2) = 12.01, p < .01, and delayed posttest, H(2) = 7.32,
p = .02

A series of paired contrasts were conducted to further investi-
gate these results. First, we investigated the immediate and delayed
benefits of receiving model-based feedback with either concrete or
virtual models to only verbal feedback to test the hypothesis that
model based feedback is more effective. Next, we compare the
concrete and virtual model conditions. Finally, we examined
which model-use behaviors predict current and future perfor-
mance.

Models versus no models. To investigate the benefit of re-
ceiving models, performance of students in the concrete and virtual
model conditions were combined and compared to students in the
control group on the three posttest measures. We predicted that
participants in the models groups would outperform the control
group on the posttest with models available. If external manipu-
lations of models lead to internalization of the spatial transforma-
tion process, participants in the models group would also be more
accurate when models are no longer available and after a delay.

Does the model-training intervention support diagram
translation? A Mann—Whitney test for the models posttest re-
vealed that translation accuracy was statistically higher for the
models group over the control group, U = 253.0,Z = —6.92,p <
.001, r = .67, replicating earlier work (Padalkar & Hegarty, 2014)
and providing evidence that models support diagram translation
accuracy.

Do models act as a scaffold or as a crutch? A Mann—Whitney
test for the no-models posttest revealed that translation accuracy
was statistically better for the models group than the control group,
U =1758.0,Z= —3.45, p <.001, r = .34, suggesting that models
acted as a scaffold to learning rather than a crutch.

Is learning with models resilient over a delay? A Mann—
Whitney test for the delayed posttest revealed that translation
accuracy was statistically higher for the models groups than for
the control group, U = 873.5, Z = —2.68, p = .004, r = .26.
These results demonstrate that the model-based intervention
supported retention of what was learned when using the models.

As shown in Table 4, performance on the delayed posttest
was statistically better than on the pretest for both the models
group and the control group, indicating that both groups learned
from their respective interventions, although improvement was
statistically greater for the models group than for the control
group, as reported earlier. For the models group, performance at
the delayed posttest was statistically poorer than at the models
posttest, indicating that some support offered by the models was
not retained over the delay. The control group was not statis-
tically different between the delayed posttest and the models
posttest. Finally, performance was not statistically different in
the no-models posttest, which occurred immediately after the
intervention, and the delayed posttest, which occurred a week
later, for either the models or control groups, indicating that
performance levels remained stable over the delay.

Comparison of concrete and virtual models. We predicted
less learning with virtual models, because the low action-
congruence of the virtual model interface would add cognitive
load, and this in turn would impede learning.

Do virtual models require more time than concrete models?
Median times for completing the set of 12 problems in the concrete
and virtual models conditions were analyzed with a Mann—
Whitney test to examine performance effort. The analysis revealed
a statistical difference between the two model conditions, U =
156.5, Z = —4.58, p < .001, r = —0.58. As shown in Figure 4,
students took more time to solve the problems with the virtual
models than with the concrete models during the models posttest,
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Figure 3.  Graph of mean learning performance for students receiving concrete
and virtual model-based interventions and a control group over measures of
no-model and delayed testing. Models were only available during the pretest and
intervention phase for the two model groups. Error bars indicate standard error. See
the online article for the color version of this figure.

time per problem generally decreased over time, and the difference
between concrete and virtual models narrowed, suggesting that
students adapted to the virtual model interface over time.* These
results are consistent with the assumption that virtual models
impose more cognitive load than concrete models, at least initially.

Are learning effects greater with concrete models than with
virtual models? Mann—Whitney tests comparing the concrete
and virtual models groups at each of the three posttests revealed no
statistically significant differences between the two models groups
on the models posttest, U = 488.5, Z = —0.92, p = .18, the
no-models posttest, U = 549.5, Z = —0.11, p = .46, or the delayed
postest, U = 534.5,Z = —0.30, p = .38. These results are contrary
to our predictions. In sum, students using the virtual models took
more time to complete the problems but achieved similar learning
outcomes to those who used concrete models.

Predictors of learning with models. We predicted that using
models to externalize key aspects of the translation, such as

STULL AND HEGARTY

matching the model to the desired orientation of the target
diagram (see Figure 2), would predict future performance when
models are not available. Correlations among three common
model-use behaviors (i.e., match-start: aligning the model to
the given diagram; rotate bond: performing an internal rotation
of the model to match the conformation of the molecule; and
match-target: aligning the model to the diagram to be drawn)
and individual difference measures (i.e., mental rotation and
abstract reasoning) are reported in Tables 5 and 6.

What predicts performance when models are available? A
stepwise multiple regression analysis was conducted to examine
how measures of spatial and reasoning abilities and use of models
predicted translation accuracy with the aid of models (see the
models posttest results on the left portion of Table 7). Entered in
the first step, the two ability measures explained a nonstatistically
significant 7% of the variance in translation accuracy (multiple
R = .26). Entered in the second step, the three model use behaviors
explained an additional and statistically significant 52% portion of
the variance. Consistent with previous research (Stull et al., 2012),
the partial regression coefficients revealed that match target (s° =
.37) was the only statistically significant and unique predictor of
translation accuracy after controlling for the other variables.

What predicts performance when models are no longer
available? To assess predictors of diagram translation perfor-
mance in the absence of models (no-models posttest), a second
stepwise multiple regression analysis was conducted (See mid-
dle portion of Table 7). In the first step, the two ability mea-
sures explained a statistically significant 13% portion of vari-
ance (multiple R = 0.36) in diagram translation accuracy.
Examination of the partial regression coefficients revealed that
neither mental rotation performance nor abstract reasoning
alone explained a statistically significant portion of the variance
in the first step. In the second step, the three model use
behaviors explained an additional and statistically significant
17% of the variance in translation accuracy. Of the partial
regression coefficients, match target was the only statistically
significant predictor of translation accuracy (sr*> = 0.12) after
controlling for the other variables. These results are novel in
that they show that how people use models predicts perfor-
mance when models are no longer available, and are consistent
with the view that external uses of models when they are
available leads to the internalization of the processes of trans-
lating between representations.

What predicts performance after a delay? To assess predic-
tors of diagram translation performance in the delayed posttest,
a third stepwise multiple regression analysis was conducted (see
the right portion of Table 7). In the first step, the ability
measures explained a statistically significant 14% of the vari-
ance in accuracy (multiple R = .37). In the second step, three
model use behaviors explained an additional and statistically
significant 12% of the variance. Examination of the partial
regression coefficients revealed that mental rotation perfor-
mance (s> = 0.06) was a statistically significant predictor of
translation accuracy in the first step. In the second step, match

* A second analysis also showed that students in the control group did
not perform statistically differently from those in the concrete models

group.
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Table 3
Medians, Means, and Standard Error Measures for Diagram Translation Accuracy for Study 1 and Study 2
Pretest Models posttest No-models posttest Delayed posttest
Study Condition Mdn M (SE) Mdn M (SE) Mdn M (SE) Mdn M (SE) n
Study 1 Concrete .333.343 (.037) 1.00 .884 (.028) .750 .669 (.052) .750 .623 (.051) 36
Virtual .333 312 (.034) 917 .858 (.031) 750 .704 (.042) .667 .651 (.048) 31
Models .333.328 (.025) 917 .872 (.020) .750 .685 (.034) .750 .636 (.035) 67
Control .333.316 (.029) 417 454 (.041) .500 .489 (.042) 458 .474 (.047) 38
Study 2 Concrete .333.260 (.035) 917 .850 (.038) .625.603 (.051) .625.640 (.047) 34
Virtual .333.389 (.030) 917 .871 (.029) .583 .591 (.055) .500 .604 (.051) 33
Models .333.323 (.025) 917 .861 (.024) .583 .597 (.037) .583.622 (.035) 67
Control 167 .270 (.032) .583 .550 (.040) 417 518 (.048) 417 .480 (.044) 37

Note.

target (sr° = 0.08) was the only statistically significant predic-
tor of accuracy, after controlling for mental rotation perfor-
mance spatial ability and the other variables. These results
suggest that how one interacts with the models, and not just the
presence of a model, affects learning. They also suggest that
individual differences in spatial skills become more predictive
when models are not available.

In summary, the results of Study 1 support the idea that the
model-based intervention scaffolds learning so that perfor-
mance gains from models are seen even when models are not
available and after a delay. For example, students who received
the model-based feedback intervention were about 64% accu-
rate on the delayed posttest whereas those who received only
verbal feedback intervention were only about 45% accurate on
the same test. Also, it is notable that students learned more in
the models conditions, even though they went through fewer
feedback cycles to meet criterion performance in the interven-
tion. The results also indicate that the concrete and virtual
models used here do not differ in their support of learning.
Finally, students learn more from models, and have more last-
ing gains when they use the model to physically enact the
representation translation by using the model to represent the
desired orientation and conformation of the target molecule.

Study 2

The virtual models used in Study 1 used a mouse and key-
board interface with low action-congruence. The equivalent

Table 4

The models group combined both the concrete and the virtual models groups.

learning gains for concrete and virtual models in that experi-
ment suggested that information gained from touching, holding,
and moving the concrete models (i.e., shape, size, configura-
tion, etc.) does not enhance learning, that is, the visual infor-
mation provided by the model was sufficient for learning. In
recent research, use of high-congruence virtual models in a
molecule manipulation task resulted in decreased time to com-
pletion compared to concrete models (Barrett, Stull, Hsu, &
Hegarty, 2014; Stull, Barrett, & Hegarty, 2013), which the
authors attribute a virtual model interface that constrained users
to task-appropriate actions. It seems plausible that a direct
manipulation interface with high action-congruence and task-
appropriate constraints might support learning even more than
concrete models. We examined this possibility in Study 2.

Although otherwise identical to Study 1, Study 2 compared virtual
models with high action-congruence to concrete models. We hypoth-
esized that learning with these virtual models would be greater than
learning with concrete models. On the basis of the results of Study 1,
we also hypothesized that the model-based intervention would be
associated with improved translation accuracy compared with the
control condition with verbal feedback, that performance gains would
be evident when models were no longer available and that learning
gains due to the model-based intervention would be resilient after a
7-day delay even in the absence of models. Finally, we expected that
interactions with the model, such as matching the model to the
intended diagram, would be a predictor of future performance without
models.

Inferential Statistics Comparing Long-Term Learning as Measured at the Delayed Posttest
Compared With Prior Performance at Pretest, Models Posttest, and No-Models Posttest for

Studies 1 and 2

Pretest Models posttest No-models posttest
Study Condition V4 ») r V4 ») r V4 ») r
Study 1 Model =575 (<.001) =70 594 (<.001) -—.73 2.05 (.04) -.25
Control —3.35  (.001) —.54 —.68 (.50) —.11 —.37 (71) —.06
Study 2 Model =577 (<.001) —=.70 640 (<.001) —.78 —.89 (.37) —.11
Control —-3.79 (<.001) —.62 245 (.01 —.40 1.27 (.20) —-.21
Note. Wilcoxon’s signed-rank test was used to compare groups and a Bonferroni correction was applied to set

the alpha level at .017 to address family-wise error rates. The sign of the Z value indicates the direction of the

effect compared with delayed posttest performance.
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Figure 4. Mean times for completing each of 12 trials in the three
conditions for Study 1 and 2. See the online article for the color version of
this figure.

Method

Participants and design. Participants were 119 undergradu-
ate organic chemistry students at a research university who com-
pleted at least one course in organic chemistry and had been
introduced to the diagrammatic representations in their lectures
and textbooks. One hundred and four students remained (age: M =
19.6, SD = 0.99) after 1 was dropped for failing to follow
directions, 7 for not completing the study, and 7 because they had
perfect or almost perfect performance (i.e., they made either zero
or one error) on the pretest, which indicated that they had already
mastered the task and there was nothing for them to learn. As in
Study 1, participants were alternately assigned to one of the two
models groups or the control group in order to achieve gender
balance. Thirty-four students (13 male), were in the concrete
model Group 33 (11 male) were in the virtual model group and 37
(12 male) were in the control group. Participants received course
credit and $40 for their participation.

Materials and apparatus. The study materials were identical
to those used in Study 1 except that the virtual models were
delivered in a perceptually controlled virtual reality modeling
system (Stull et al., 2013). This system was modeled after an
integrated graphic and haptic system developed by Ernst and
Banks (2002), which was configured to portray the illusion that a
displayed virtual model was directly manipulated with the partic-

Table 5
Correlation Between Predictors and Diagram Translation
Accuracy for Study 1 and 2

Models  No-models Delayed
Predictors Pretest » posttest r  posttest r  posttest ¥  n
Study 1
Match target .099 7487 5197 4487 69
Rotate bond 155 373 285" 182 69
Match start 013 375 .208 .203 69
Mental rotation 232 2427 301 368 69
Abstract reasoning .149 177 301" 3127 69
Study 2
Match target —.013 708" 330" 422769
Rotate bond —.155 378" .061 212 69
Match start —.146 .249¢ 191 .203 69
Mental rotation .045 235" 357 37770
Abstract reasoning .102 .057 159 .190 70

Note. Video data were not collected for three of the participants in Study
1, which precluded tabulating model-use behaviors. Cronbach’s alpha was
highly reliable for the 20-item mental rotation measure (Study 1: o = .77;
Study 2: a = .76) and the 40-item abstract reasoning measure (Study 1:
a = .94; Study 2: a = .90).

“p<.05 Tp<.0l. "p<.001

ipants’ colocated hands via a hand-held interface (see Figure 5).
The hand-held interface was designed to allow both global rotation
of the whole virtual object and local rotations of the two halves of
the model around the central carbon—carbon bond, as both of these
types of rotation are necessary for the tasks presented in this paper.
In addition, stereo glasses were used to provide stereoscopic depth
cues, enhancing the illusion that the participants were using real
rather than virtual models.

Procedure. The procedures for Study 2 were identical to that
for Study 1. Out of 641 pretest trials, 205 (32%) were correct, 379
(59%) were corrected in the first cycle of the intervention, 51 (8%)
were corrected in the second cycle, and there were 6 cases (ap-
proximately 1%) in which participants took three or more attempts
to draw a correct solution.”

Results and Discussion

There were no statistically significant differences between the
groups in age, mental rotation ability, abstract reasoning ability,
grade point average, or number of organic chemistry courses
completed. There was a statistically significant difference between
the groups in the number of intervention cycles needed to reach
criterion on Pretest problems. Relevant descriptive and inferential
statistics are given in Table 8.

Participants in the control group required statistically signifi-
cantly more corrective cycles than did those in the virtual models
group, U = 354.0,Z = —3.07, p < .01, r = .37, but not compared
to those in the concrete models group, U = 555.0,Z = —0.87,p =
.19. The Concrete and Virtual groups were not statistically signif-
icantly different, U = 374.5, Z = —2.40, p = .02, r = .29.

Models as learning aids. We predicted that participants who
received models would perform better on the models posttest,

3 Spatial errors were the most common, and accounted for 90% of all
errors in Study 2. The percentage of spatial errors did not differ across
conditions.
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Table 6
Intercorrelations Between Predictors for Study 1 and 2
Rotate Match Mental Abstract
Predictors bond r start r rotation r reasoning r
Study 1
Match target 520" 378" 324 261"
Rotate bond .352%" 246 236
Match start .070 .071
Mental rotation 327
Study 2
Match target 6417 396" 127 159
Rotate bond 6517 .061 —.009
Match start 113 .036
Mental rotation 3917

"p< .05 "p<.0L

no-models posttest, and delayed posttest, as in Experiment 1. We
also predicted that learning with high-congruence virtual models
would be greater than with concrete models. Finally, we predicted
that structurally aligning the given models to the desired orienta-
tion of the target diagrams (i.e., match-target) would predict future
performance when models are not available.

Figure 3b and Table 3 present the accuracy data for the pretest
and three posttests for Study 2. There was a statistically significant
difference between the three conditions on pretest performance,
H(2) = 949, p = .01. Post hoc comparisons revealed that the
virtual models group performed significantly better than the con-
trol group, U = 385.0, Z = —2.75, p < .01, r = .33, and the
concrete model group, U = 359.5,Z = —2.62,p = 01, r = 320
As in Experiment 1, we first investigated the immediate and
delayed benefits of receiving model-based feedback versus receiv-
ing only verbal feedback. Next, we investigated the comparison of
high action-congruence virtual models with concrete models. Fi-
nally, we investigated the effects of abilities and use of models on
performance and learning outcomes.

Models or no models. To investigate the benefit of receiving
model-based feedback, the two model groups were combined and
compared with the control group on the three posttests.

Does the model-training intervention support diagram
translation? A Mann—Whitney test for the models posttest re-
vealed that translation accuracy was statistically higher for the
models group than for the control group, U = 415.50, Z = —5.69,
p < .001, r = .57. These results replicate Study 1 and earlier work
(Padalkar & Hegarty, 2014; Stull et al., 2012) and indicate that
models support diagram translation.

Do models act as a scaffolding for learning or as a crutch? A
Mann—-Whitney test for the no-models posttest showed no statis-
tically significant difference between the model and control
groups, U = 1047.0, Z = —1.31, p = .09. This result does not
support our prediction and does not replicate the result of Study 1,
which showed the predicted effect.

Is learning with models resilient over a delay? A Mann—
Whitney test for the delayed posttest revealed that the model group
was statistically more accurate than the control group, U = 883.0,
Z = =244, p < .01, r = .24. That is, although there was no
statistically significant immediate benefit of the model interven-
tions, the predicted benefit was evident in longer term perfor-
mance, as in Study 1.

As with Study 1, performance on the delayed posttest was also
compared with performance on the pretest, the models posttest,
and the no-models posttest. Results replicated those for the models
condition from Study 1 but differ in showing that students in the
control group showed a statistically significant decrease in perfor-
mance between models posttest and the delayed posttest. These
analyses are summarized in Table 4.

Comparison of concrete and virtual models. We predicted
that performance would be better with high-congruence virtual
models than with concrete models because high-congruence vir-
tual models impose less cognitive load because they mimic im-
portant perceptual features of the concrete models and impose
interactive constraints to limit the users’ interactions with the
model to task-relevant interactions.

Do interactions with high-congruence virtual models take
more time than interactions with concrete models? Mean times
for completing the set of 12 problems with concrete and virtual
models did not differ, based on a Mann—Whitney test, U = 509.5,
Z = —065,p = .52, r = —0.08.7 Trial times for Study 2 are
plotted on the bottom graph in Figure 4. These results show no
evidence that the virtual models impose more cognitive load.

Is learning better with high-congruence virtual models than
with concrete models? Mann—Whitney tests were used to com-
pare the concrete models group with the virtual models group at
each of the three posttests. There was no statistically significant
difference between the two model groups on the Models Posttest,
U = 558.0, Z = —0.04, p = .48, the no-models posttest, U =
553.5, Z = —0.10, p = .46, or the delayed posttest, U = 520.0,
Z = —0.52, p = .30. The equivalence between these two groups is
contrary to our predictions.

Predictors of learning with models. Correlations between
the accuracy measures, the three model-use behaviors (i.e., match-
start, rotate bond, and match-target), and ability measures (i.e.,
mental rotation and abstract reasoning) are reported in Tables 5
and 6.

What predicts performance when models are available? A
stepwise multiple regression analysis was conducted (See left
portion of Table 9) to examine predictors of translation accuracy
on the models posttest. The two ability measures explained a
nonstatistically significant 4% of the variance in translation accu-
racy (R = .19) in the first step. The three model use behaviors
explained an additional and statistically significant 48% portion of
the variance in the second step. The partial regression coefficients
revealed that match target (sr” = 0.32) was the only statistically
significant predictor of translation accuracy after controlling for
the other variables.

What predicts performance when models are not available?
A second stepwise multiple regression analysis was conducted (see
Table 9) to assess diagram translation performance in the absence
of models (no-models posttest). In the first step, the two individual

¢ There were more low performing participants in the control and con-
crete models groups. In a supplementary analysis, we omitted the lowest
performing students for all three groups, which equalized pretest perfor-
mance and revealed that the main results regarding the posttest did not
change meaningfully.

7 A second analysis also showed that differences in performance of
students in the control group and the concrete models group were not
statistically different.
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Table 7

Hierarchical Multiple Regression Analyses Predicting Diagram Translation Accuracy From Individual Difference Measures (Step 1)

and Model-Use Behaviors (Step 2) for Study 1

Models posttest

No-models posttest Delayed posttest

Predictors B SE B B SE B B SE B
Step 1
Constant 71 .09 .28 .14 23 15
Mental rotation <.01 <.01 20 <.01 <.01 22 .01 <.01 26"
Abstract reasoning <.01 <.01 11 .01 .01 22 .01 .01 .19
R’ .07 13 14
F 2.21 4.66" 477"
Step 2
Constant 25 12 —.13 25 .06 27
Mental rotation <-.01 <.01 —.01 <.01 <.01 .09 <.01 <.01 18
Abstract reasoning <.01 <.01 —.02 <.01 <.01 15 01 01 14
Match start <.01 <.01 .06 <.01 01 .04 01 01 11
Rotate bond <—.01 .01 —.02 —.01 .03 —.02 -.03 .03 —.15
Match target .06 .01 767 06 .02 44 05 .02 37"
R? .59 31 25
AR? 52 17 12
FAR? 24.69" 4.80"" 3.08"
Note. N = 64. Data conformed to statistical assumptions of the regression analysis.

*p<.05 *p<.0l. *p<.00l

difference measures explained a statistically significant 11% of
variance (R = 0.33). In the second step, the three model use
behaviors explained an additional and statistically significant 12%
of the variance in translation accuracy. The partial regression
coefficients revealed that mental rotation performance but not
abstract reasoning explained a statistically significant portion of
the variance (s7° = 0.08) in the first step. In the second step, both
mental rotation performance (sr°> = 0.07) and match target (sr* =
0.10) uniquely accounted for a statistically significant portion of
the variance after controlling for all other variables.

What predicts performance after a delay? A third stepwise
multiple regression analysis assessed predictors of diagram trans-
lation performance in the delayed posttest. In the first step (see the
right portion of Table 9), the individual difference measures ex-
plained a statistically significant 11% portion of the variance (R =
.33). In the second step, the model-use behaviors explained an
additional and statistically significant 13% of the variance in
translation accuracy. The partial regression coefficients revealed
that mental rotation performance (sr> = 0.07) was a statistically
significant predictor of translation accuracy in the first step with
both mental rotation performance (s> = 0.06) and match target
(sr* = 0.08) each accounting for a statistically significant portion
of the variance after controlling for all other variables.

In summary, as in Study 1, interventions with model-based
feedback were more successful (86% accuracy in the models
posttest) than an intervention with verbal feedback alone (55%
accuracy in the models posttest), and this benefit was seen after a
week-long delay when models were not available (62% accuracy
for the models interventions vs. 48% for the verbal feedback
intervention). As in Study 1 and contrary to predictions, there was
no difference in posttest performance between those who received
concrete and virtual models, indicating that high congruence vir-
tual models and concrete models are equally effective. Finally, as
before, using the models to physically enact the desired orientation
and conformation of the target diagram predicted performance

when models were available and later performance when models
were no longer available, consistent with the view that more use of
external models leads to more ability to perform the translations
internally. Finally, mental rotation performance was more predic-
tive of translation accuracy when models were not available.

General Discussion

This research investigated the development of representational
competence in organic chemistry through use of concrete and
virtual 3D models to help students learn to translate between
multiple 2D diagram formats. The results replicate earlier work
(Stull et al., 2013; Padalkar & Hegarty, 2014) in showing that
students are more successful in translating between diagrams when
they have models available, that using a model to enact the
translation process in the world is predictive of learning, and that
a model-feedback intervention dramatically improved learning.
The new and important contributions of this study are the demon-
strations that (1) model-based feedback is superior to verbal-
feedback alone, (2) models scaffold learning rather than acting as
a crutch, (3) learning with model-based instruction is resilient over
a delay of several days, and (4) learning with models transfers to
performance when models are no longer available. Finally, our
results show that concrete models are equivalent to virtual models
in promoting learning, and that the level of action-congruence of
the interface to the virtual model does not affect learning.

First, this research demonstrates that model-based feedback is
superior to verbal feedback for our task, observed as a large effect
size for the models posttest in both studies (Study 1: r = .67; Study
2: r = .57). Accuracy ranged from 30% to 40% across conditions
on the pretest, the model groups were more than 80% accurate on
the models posttests, in contrast with the control groups, who were
approximately 50% accurate (see Table 3 for exact numbers).
While previous research showed a larger effect size for model-
based feedback than for verbal feedback in the context of the same
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Figure 5. High-congruence virtual reality system. (a) The computer
display was mounted horizontally on a metal frame above the desk surface
and facing downward. (b) The angled mirror allowed the participant to
view the virtual model. (¢) The hand-held interface was positioned on an
adjustable stand behind the mirror and in the same physical location as the
virtual model. (d) The interface enabled the participant to manipulate the
virtual model. (Originally published in Stull, et al, 2013 and Barrett, et al,
2014) See the online article for the color version of this figure.

tasks (Padalkar & Hegarty, 2014), that comparison was across
experiments. One novel contribution of the present research is to
replicate the benefits of model-based feedback over verbal feed-
back when they are directly compared in the same experiment.
Padalkar and Hegarty suggested two possible reasons why model-
based feedback intervention was successful, first, that it confronts
students’ illusion of understanding and second, that it exposes
students to the benefits of models. The verbal feedback condition
in this experiment confronted students’ illusions of understanding
and was somewhat successful in improving diagram translation.
However, the model-based feedback significantly elevated perfor-
mance relative to verbal feedback alone, consistent with the idea
that model-based feedback relieves cognitive load, enabling stu-
dents to invest their cognitive resources in learning the represen-
tational conventions and translation processes.

Second, models scaffolded learning. Specifically, the superior per-
formance of the models groups when models were no longer available
is inconsistent with the models-as-crutch account in that the improved
performance in delayed testing for the model conditions indicates a
benefit of models for long-term and not just immediate learning.
Participants in the models groups in Experiment 1 had 60% to 70%
accuracy on the no-models posttest, compared to about 50% for the
control group (see Table 3 for exact numbers), observed as a medium
effect size for Study 1 (r = .34). In contrast, the observed advantage
of the models group over the control group was not evident in the

no-model posttest in Study 2. However in the delayed posttest of both
studies, the models groups performed at 60% to 70% accuracy com-
pared with about 50% for the control group, observed as a medium
effect size in both studies (Study 1: r = .26; Study 2: r = .24). These
results demonstrate that models offer more than a vehicle to exter-
nalize a process or read-off an answer. We propose that when cog-
nitive load is reduced, the experience of matching the models to the
given diagrams promotes students’ ability to make referential con-
nections between different representations and that manipulating
models and observing the resulting spatial transformations enables
students to internalize a mental model of these transformations so that
they can later perform these transformations without the scaffold of
models. This account is consistent with basic research on mental and
manual rotation (Adams et al., 2014; Pani et al., 2005; Smith &
Olkun, 2005; Wohlschlager & Wohlschlager, 1998), with principles
for the design of chemical visualizations proposed by Wu and Shah
(2004) and with theories of enactive learning more generally (Cohen,
1989; Engelkamp et al., 1994; Glenberg et al., 2004; Schwartz &
Plass, 2014).

Third, we observed that students who used the external transfor-
mation strategy more when models were available were also much
better at translation accuracy later when models were not available.
Model-use behavior, such as match target, is predictive of successful
diagram translation when models are present, because models exter-
nalize what would otherwise be a difficult internal manipulation.
Critically, this behavior is also predictive of successful diagram trans-
lation in delayed tests and when models are not available. This result
is further support for the view that performing this task externally
leads to the internalization of the relevant cognitive processes.

Fourth, our findings are consistent with previous research (Bodner
& McMillan, 1986; Harle & Towns, 2010; Pribyl & Bodner, 1987) in
demonstrating a relationship between spatial ability and performance
of an organic chemistry task. However, we find that this relationship
is attenuated when models are available, and model use is a better
predictor of performance than either spatial ability or general intelli-
gence, which was assessed by an abstract reasoning test. This result
supports our contention that external models offer a direct represen-
tation of 3D space, which is difficult for some students to imagine,
especially for students with poor spatial ability, which is often a
reflection of limited spatial working memory (Shah & Miyake, 1996).

Fifth, we predicted that action-congruence would affect learning
with models, because low-congruence virtual models impose added
cognitive load due to a mismatch between the actions performed with
the interface and the resulting movements of the models. Although
model use took more time with low-congruence virtual models than
with concrete models in Study 1, likely reflecting this cognitive load,
we did not observe a statistically significant difference between the
two model types in learning. Moreover, there was no difference in
time or accuracy between concrete models and high-congruence mod-
els in Study 2. These results make it clear that action-congruence is
not necessary for models to be effective in the present context. This
conclusion is consistent with research showing that people can de-
velop mental models that link actions and intended outcomes even
when they are not congruent (Schwartz & Holton, 2000), provided
that the observed outcome is predictable from the performed action. It
is also important to note that in both experiments, learning gains were
equivalent with virtual and concrete models, indicating that the addi-
tional shape information offered by manipulating concrete models
was not necessary for learning.
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Means, Standard Deviations, and Inferential Statistics Comparing Individual Difference
Measures for the Three Intervention Conditions in Study 2

Measures Condition M (SD) n Inferential test

Age Concrete 19.72 (.74) 34
Virtual 19.59 (1.10) 33 H(2) =2.02,p = .36
Control 19.57 (1.09) 37

MRT Concrete 37.39 (15.36) 34
Virtual 35.35 (17.56) 33 H(2) = 1.62,p = 44
Control 33.73 (18.17) 37

Abstract reasoning Concrete 22.83 (7.42) 34
Virtual 22.12 (7.81) 33 H2) = .11,p = .95
Control 23.20 (6.92) 37

GPA Concrete 3.03 (.32) 34
Virtual 3.06 (.36) 33 H2)=172,p = 42
Control 3.11 (.37) 37

Number of O-chem courses Concrete 1.89 (.40) 34
Virtual 1.88 (.41) 33 H(2) = 26,p = .88
Control 1.84 (.44) 37

Number of intervention cycles Concrete 491 (1.52) 34
Virtual 4.03 (1.61) 33 H(2) = 10.59, p < .01
Control 5.35 (1.90) 37

Note.

A Kruskal-Wallis Test was performed because assumptions of analyses of variance were not met for

some measures. MRT = Mental Rotation Test; GPA = grade point average.

Limitations and Future Directions

There are a number of limitations to these studies, which suggest
directions for further research. First, the models posttests in these
studies were confounded because participants in the models groups
had models available at this posttest, whereas the control groups
did not. However, the no-models and delayed posttests did not
have this confound, and these are equally or more important
outcome measures, as ultimately students need to be able to
perform representation translation without models available. In

Table 9

future research, a control condition that had models available at
this first posttest would avoid this confounded and allow the
assessment of model use when following an intervention without
models.

Second, although benefits from the model-based interventions
persisted in delayed posttests, it is important to note that perfor-
mance on the no-models posttests was poorer than on the models
posttest, suggesting that gains from the models interventions did
not fully transfer to solving problems without models. In a related

Hierarchical Multiple Regression Analyses Predicting Diagram Translation Accuracy From Individual Difference Measures (Step 1)

and Model-Use Behaviors (Step 2) for Study 2

Models posttest

No-models posttest Delayed posttest

Predictors B SE B B SE B B SE B
Step 1
Constant 78 .08 .38 12 40 11
Mental rotation <.01 <.01 .19 <.01 <.01 33" .01 <.01 31
Abstract reasoning <-.01 <.01 <-.01 <-.01 .01 <-.01 <.01 .01 .04
R? .04 11 11
F 1.17 3.80" 3.85%
Step 2
Constant .35 12 29 24 .05 .23
Mental rotation <.01 <.01 18 .01 <.01 30" .01 <.01 29"
Abstract reasoning <-.01 <.01 —.14 <-.01 .01 —.04 <-.01 .01 —.01
Match start <.01 .01 .03 .02 .02 17 .01 .01 .06
Rotate bond —.01 .02 —.14 —.05 .03 -.30 —.01 .03 —.06
Match target .06 .01 J7 05 .02 427 .04 .02 38"
R’ 51 23 24
AR? A48 12 13
FAR? 19.57°* 3.20" 3.32"
Note. N = 68. Data conformed to statistical assumptions of the regression analysis.

*p<.05 *p<.0l. **p<.00l.
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study, Stieff, Lira, and DeSutter (2014) gave students minimal
instructions with models and observed that students performed
more poorly in later testing without models. These results, com-
bined with ours, raise questions about the amount of experience
with models that is necessary to produce persistent learning out-
comes. These questions could be addressed in future studies that
controlled the amount of experience with models.

Third, the educational gains in this study were specific to
learning to translate between representations. Although acquiring
representational competence is a crucial aspect of chemistry edu-
cation, it is also important to realize that representations are just a
tool for reasoning about the characteristics of chemicals, such as
stereochemical relations between molecules and how a molecule’s
shape affects its behavior in chemical reactions (Bucat & Mo-
cerino, 2009). An important next step is to investigate the value of
model-based interventions to support students as they reason about
molecular structure and reactivity.

A fourth limitation of these studies is that they were conducted
in the controlled environment of the psychology laboratory with a
one-on-one interaction between an experimenter and a student.
Future research should explore whether and how model-based
interventions can be effectively implemented in authentic class-
room settings. In classroom settings, lecturers typically use models
to demonstrate complex concepts without providing students with
an opportunity to manipulate models for themselves. This raises
the question of whether students can benefit from watching an-
other person manipulating a model, or if they must perform the
enactment themselves. Investigating this question, Springer (2014)
compared performance of two groups in an organic chemistry
course, one receiving a model-based demonstration with verbal
explanation of diagrammed concepts and a second with only
verbal explanations and diagrams. Students in the model-based
demonstration were more successful on posttests than those who
received only verbal instructions, suggesting that watching some-
one else manipulate a model is somewhat effective for learning.
However, the present research suggests that active manipulation of
the models is likely to provide a benefit beyond just viewing
another’s actions, which should be investigated further.

Theoretical Implications

Several unique theoretical implications can be derived from this
study. First, external 3D models can serve as cognitive scaffolds to
support students as they reason about complex spatial problems.
Models help to ease cognitive load by externalizing the spatial
representations that would otherwise drain cognitive resources for
learning. Second, enactive use of 3D models can also support
students in learning to translate between representations and rea-
son about spatial processes. Most of the prior work on enactive
learning has focused verbal learning such as recall and recognition
of phrases (Cohen, 1989) or reading comprehension (Glenberg et
al., 2004). The present study demonstrates that enactment can also
offer value in educating complex spatial skills, in a STEM domain.
More generally, augmenting cognition with external representa-
tions can enable students to construct spatial mental models for
later use in problem solving. Furthermore, reasoning about spatial
processes by manipulating external models is not dependent on the
congruence between the performed interface actions and the ob-
served motion of the models. Factors such as action-congruence

and haptic fidelity of the hand-held interface, have no effect on
learning in this context. This suggests that the value of model
enactment is due to intentional interactions with models, or visu-
ally observing the results of these interactions.

Educational Implications

This study has several educational implications. First, a clear im-
plication is that it is important to incorporate manipulation of models
into instruction in organic chemistry. Manipulating models does not
just offload difficult mental transformation processes on external
actions, but can lead to the internalization of these transformations and
therefore train mental transformation processes. Furthermore, using
models as feedback is a particularly effective way of inducing stu-
dents to engage with models and experience their benefits, and this
has been shown not just in organic chemistry, but also in geometry
(Cohen & Hegarty, 2014) and geology (Gagnier, Atit, Ormand, &
Shipley, 2012) indicating that it may be a general strategy that can be
used for teaching in spatially rich domains. Finally, our research
suggests that it does not matter whether models are virtual or concrete
or employ a high- or low-congruence interface as long as students
interact with and receive feedback from the models they use as tools
for enactment, providing new evidence for the potential of virtual
resources in education.
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Appendix A

Instructions I

Welcome and thank you for agreeing to participate in our study! It is about learning with molecular representations in organic chemistry.
In this study, you will complete several worksheets. For each, you will be shown a Newman or a Dash-Wedge diagram of a molecule.
Your task will be to draw a different diagram for each molecule. For example, you might be given a Dash-Wedge diagram of a molecule
and asked to draw the corresponding Newman diagram for the same molecule. The text on each page will describe which diagram you
are to draw. Some of the transformations may be difficult but please try your best.

Before we proceed to the worksheets, we will review the rules for interpreting the different diagrams that you will be expected to draw.
Both use different conventions to illustrate the 3D shape of the molecule. Notice that the same 4-carbon molecule is illustrated in both
diagrams in the examples below.

Dash-Wedge In a Dash-Wedge diagram, the molecule is oriented with the backbone
carbons at the two 4-way intersections of lines on the left and right

of the diagram. Dashed lines represent bonds to atoms that are

s e
N
M

PR

H

going into the page (below the plane of the paper). Wedge lines
represent atoms that are coming out of the page (above the plane of
the paper). Solid lines represent bonds to atoms that are in the plane
of the paper.
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OH CH;
2 Newman
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In a Newman diagram, the molecule is oriented with one backbone
carbon in front of the other. The front carbon is located at the
intersection of the three lines (noon, 4 o’clock, and 8 o’clock

CH; around the circle). The atoms at the ends of these three lines are
cl attached to the front carbon. The rear carbon is behind the circle.
The atoms at the ends of the shorter lines connected to the circle (2
o’clock, 6 o’clock, and 10 o’clock around the circle) are attached to
the rear carbon.

H OH
CH;

In the Fischer diagram the components at the right and left of the
CH3 horizontal lines are coming out of the page (above the plane of the
paper) and the atoms at the top and bottom of the vertical line are
going into the page (below the plane of the paper). The two
backbone carbons are located where the horizontal lines cross the
vertical line. These carbons are on the plane of the paper.

Fischer

H——OH

ghted by the American Psychological Associa

Cl——H

CH;
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Take a moment to visualize how each diagram represents the three-dimensional structure of the molecule and satisfy yourself that both
diagrams represent the same molecule. Compare and contrast the diagrams because you will need to draw each in the following activity.
Please let the experimenter know if you have any questions.

(Appendices continue)
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Appendix B

Instructions II

Next, you will be given six diagrams. For each of these diagrams, please draw a different diagram of the same molecule above the line

that divides the page.

On each worksheet, one diagram will be given at the top of each page. Below each diagram will be instructions indicating which diagram you should

draw. Here is an example of a completed worksheet.

structure.

CH;

CH3

CH: Ha
u
OH CHs

experimenter

Draw the Newman diagram that corresponds to this dash-wedge

Cl

G Drawn by
oH student

The task is not timed so please strive to be accurate.

Please note that you do not have to draw the most energy efficient conformer of the molecule. Also, some of the molecules you will

see might be uncommon or unfamiliar to you.

As a reminder:
Carbon is C
Hydrogen is H
Nitrogen is N
Oxygen is O
Chlorine is Cl

Please let the experimenter know if you have any questions.
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